Abstract

AbstractOne‐dimensional mesoporous composite CuO−Co3O4 /N‐TiO2 nanofibers (CuCoNT NFs) have been fabricated by in situ sol−gel electrospinning technique. In our approach, both polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) are used as dual polymeric carrier matrix for the fabrication of electrospun CuCoNT NFs. PVP chains assist the electrospinning of the uniform composite nanofibers whereas PEG is responsible for mesoporosity which is confirmed by N2 sorption analyses. Along with CuCoNT NFs, other nanofiber samples (TiO2 NFs, N‐TiO2 NFs, CuO/N‐TiO2 NFs, Co3O4/N‐TiO2 NFs) have also been fabricated for comparative studies. The morphology and composition of the NFs have been confirmed by the HR‐TEM and XPS analyses. The red shifting of band gap energy from anatase TiO2 NFs to composite CuCoNT NFs (1.57 eV) is suggesting formation of visible light response. Oxygen vacancies in CuCoNT NFs, leads to lowering the e− − h+ recombination. The lowering of photoluminescence spectrum and high photocurrent response in CuCoNT NFs makes CuO as low cost cocatalyst. The composite CuCoNT NFs is treated as an efficient photocatalyst for swift degradation of mixed dyes in visible light, an exemplary move. Exactly, 100% mixed dyes (30 mg/L) degradation is achieved at pH 10 in just 60 minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.