Abstract

GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.