Abstract

The combinations of photothermal therapy (PTT) and chemotherapy (CHT) have attracted increasing attention for cancer therapy. In the present study, paclitaxel as an anticancer drug and graphene oxide/gold nanorods (GO/Au NRs) were simultaneously loaded into the poly (tetramethylene ether) glycol based-polyurethane (PTMG-PU) (core)/chitosan (shell) nanofibers prepared by the coaxial electrospinning method. The potential of the synthesized nanofiber as a pH/temperature dual responsive carrier was investigated for the controlled release of paclitaxel against A549 lung cancer during PTT/CHT combined method. The synthesized core-shell nanofibers were characterized using SEM, TEM and XRD analysis. The drug encapsulation efficiency, drug release and kinetic studies were carried out. The compatibility of the synthesized core-shell nanofibers was also investigated. The cell viability of the synthesized nanofibers treated with A549 lung cancer cells was investigated under alone CHT, alone PTT and PTT/CHT method. The in vivo studies indicated that the PTT/CHT method demonstrated an optimal therapeutic effect on tumor inhibition without change in body weight. The obtained results demonstrated that the synthesized core-shell nanofibers would be used for lung cancer treatment under NIR irradiation in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.