Abstract

Several attempts made so far to combine silk fibroin and polyurethane, in order to prepare scaffolds encompassing the bioactivity of the former with the elasticity of the latter, suffer from critical drawbacks concerning industrial and clinical applicability (e.g., separation of phases upon processing, use of solvents unaddressed by the European Pharmacopoeia, and use of degradable polyurethanes). Overcoming these limitations, in this study, we report the successful blending of regenerated silk fibroin with a medical-grade, non-degradable polyurethane using formic acid and dichloromethane, and the manufacturing of hybrid, semi-degradable electrospun tubular meshes with different ratios of the two materials. Physicochemical analyses demonstrated the maintenance of the characteristic features of fibroin and polyurethane upon solubilization, blending, electrospinning, and postprocessing with ethanol or methanol. Envisioning their possible application as semidegradable substrates for haemodialysis arteriovenous grafts, tubular meshes were further characterized, showing submicrometric fibrous morphologies, tunable mechanical properties, permeability before and after puncture in the same order of magnitude as commercial grafts currently used in the clinics. Results demonstrate the potential of this material for the development of hybrid, new-generation vascular grafts with disruptive potential in the field of in situ tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 807-817, 2019.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call