Abstract
Sol-gel driven hydroxyapatite (HA) nanoparticles and graphene nanoflakes were incorporated with polycaprolactone (PCL) at different concentrations, and then electrospun at various spinning conditions, such as distance, electrical potential, viscosity and pump speed. The HA nanoparticles were initially amorphous, so they were annealed at elevated temperature (750 °C) for two hours to make them crystalline. Scanning electron microscopy and X-ray diffraction analysis techniques were conducted on the produced nanocomposite fibers. The studies showed that the HA nanoparticles (20–50 nm) and graphene were well distributed in the PCL fibers (500 nm to 5 μm). We believed that such nanoscale biomaterials can accelerate the bone growth and bone regeneration for many patients who are seeking solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.