Abstract

In this study, chitosan and gelatin solutions were blended at five different ratios. Samples were fed into electrospinning apparatus to produce non-woven nanofibrous mats. Scanning electron microscopy (SEM) showed that the low-viscosity sample with 30% chitosan and 70% gelatin (sample 30/70) formed the least amount of beads and droplets and yielded fibers with the highest morphological uniformity. To examine the effect of processing parameters on fibers morphology and nanofibers diameter, flow rate, voltage and distance between needle to the collector were changed in the sample 30/70. SEM revealed that high voltages (25 kV) and flow rates (1.5 ml·h⁻¹) decrease the uniformity of fibers and lead to bead and droplet formation. It has also shown that the distance between the tip and the collector have no significant effect on fibers' structure. The values of 15 kV (voltage), 0.2 ml·h⁻¹ (flow rate) and the fixed distance of 15 cm were identified as the optimal electrospinning conditions, which produce fibers with a mean diameter of 180±20 nm. Fourier transform infrared (FTIR) experiment revealed an increase in N-H bending and decrease in C-O stretching vibration in both chitosan and gelatin at 1060 and 1148 cm⁻¹. The in vitro biocompatibility tests performed with human skin fibroblasts showed excellent cell proliferation (MTT assay) and attachment (SEM) on these scaffolds confirming its highly acceptable biological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.