Abstract

We fabricated multi-walled carbon nanotube (MWNT) reinforced polyurethane (PU) nanofiber (MWNT-PU) web via electrospinning. In order to optimize the electrospinning conditions, we investigated the effects of various parameters including kind of solvent, viscosity of the spinning solution, and flow rate on the spinnability and properties of nanofiber. N,N-dimethylformamide (DMF), tetrahydrofuran (THF) and their mixture with various volume ratio were used as the spinning solvent. Morphology of the nanofiber was studied using scanning electron microscope (SEM) and transmission electron microscope (TEM), confirming successful fabrication of MWNT-PU nanofiber web with uniform dispersion of MWNT in longitudinal direction of the fiber. The MWNT-PU nanofiber web exhibited two times higher tensile strength than PU nanofiber web. We also fabricated electrically conducting MWNT-PU nanofiber web by coating poly(3,4-ehtylenedioxythiophene) (PEDOT) on the surface of MWNT-PU nanofiber web for electromagnetic interference (EMI) shielding application. The electromagnetic interference shielding effectiveness (EMI SE) was quite high as 25 dB in the frequency range from 50 MHz to 10 GHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call