Abstract

Nowadays, hundreds of consumer products contain metal and metal oxide nanoparticles (NP); this increases the probability of such particles to be released to natural waters generating a potential risk to human health and the environment. This paper presents the development of efficient carboneous nanofibrous membranes for NP filtration from aqueous solutions. Free‐standing carbon nanofiber (CNF) mats with different fiber size distribution ranging from 126 to 554 nm in diameter were produced by electrospinning of polyacrylonitrile (PAN) precursor solution followed by thermal treatment. Moreover, tetraethoxyorthosilicate was added to provide flexibility and increase the specific surface area of the CNF. The resulting membranes are bendable and mechanically strong enough to withstand filtration under pressure or vacuum. The experimental results of filtration revealed that the fabricated membranes could efficiently reject nanoparticles of different types (Au, Ag, and TiO2) and size (from 10 to 100 nm in diameter) from aqueous solutions. It is worth mentioning that the removal of Ag NP with diameters as small as 10 nm was close to 100% with an extremely high flux of 47620 L m−2 h−1 bar−1.

Highlights

  • Nanotechnology is having a large impact in manufactured products in most major industry sectors, including electronic, cosmetic, automotive, and healthcare sectors

  • This paper presents the development of efficient carboneous nanofibrous membranes for NP filtration from aqueous solutions

  • Free-standing carbon nanofiber (CNF) mats with different fiber size distribution ranging from 126 to 554 nm in diameter were produced by electrospinning of polyacrylonitrile (PAN) precursor solution followed by thermal treatment

Read more

Summary

Introduction

Nanotechnology is having a large impact in manufactured products in most major industry sectors, including electronic, cosmetic, automotive, and healthcare sectors. According to a recent survey [1] over 1,300 nanotechnology-related products are currently on the market. Free nanoparticles (NP) are likely to enter the aquatic environment in all stages of nanomaterials life cycle (production, processing, use, recycling, and disposal). These particles can persist in natural bodies and are not fully removed by drinking water treatment systems, thereby posing a potential public health concern [2, 3]. The development of new barrier materials is needed to reduce the potential risks related to human and environmental exposure to nanomaterials [4]. Due to their very large specific area, very small pore size, and high porosity, have been shown to improve the efficiency of conventional materials used for the filtration and separation of particulate materials [5, 6]

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.