Abstract

Amidst rapid industrialization and urbanization, air pollution has emerged as a global environmental challenge. Traditional air filtration materials face challenges in effectively filtering PM0.3 and often result in discomfort due to high air resistance when used for personal protection, as well as excessive energy consumption in industrial air purification applications. This study initially utilized extremely high environmental humidity to induce fiber formation, resulting in the preparation of a fluffy fiber membrane with a three-dimensional curly morphology, which increased the porosity to 96.93%, significantly reducing air resistance during filtration. Subsequently, rutile TiO2 with a high dielectric constant was introduced, exploiting the low pressure drop characteristic of the fluffy 3D curly fiber membrane combined with the electret effect of TiO2 nanoparticles to notably improve the issue of excessive pressure drops while maintaining filtration efficiency. The microstructure, morphology, and element distribution of the fibers were analyzed using FESEM and EDS. FTIR and XRD were employed to examine the functional groups and crystal structure within the fibers. The electret effect and filtration performance of the fiber membrane were investigated using an electrostatic tester and a particulate filtration efficiency tester. The results demonstrated that inducing fiber formation under high-humidity conditions could produce fibers with a 3D curly structure. The fiber membrane was highly fluffy, significantly reducing the pressure drop. Introducing an appropriate amount of titanium dioxide markedly improved the electrostatic effect of the fiber membrane, enhancing the filtration performance of the 3D curly PVDF/TiO2 composite fiber membrane. With a 0.5% addition of TiO2 nanoparticles, the filtration efficiency of the fiber membrane reached approximately 99.197%, with a pressure drop of about 49.83 Pa. This study offers a new approach to developing efficient, low-resistance air filtration materials, showcasing the potential of material innovation in addressing air quality challenges within the sustainable development framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.