Abstract

A method utilizing electrospray ionization coupled with tandem mass spectrometry was developed as a facile and rapid method to identify and quantify lipid remodeling in vivo. Electrospray/tandem mass spectrometric analyses were performed on lipids isolated from liver tissue and resident peritoneal cells from essential fatty acid sufficient and deficient mice. Essential fatty acid deficiency was chosen as the paradigm to evaluate the methodology because it epitomizes the most extreme dietary means of altering fatty acid composition of virtually all cellular lipid species. Qualitative and quantitative changes were measured in the phospholipid and cholesterol ester species directly in the chloroform/methanol lipid extract without any prior chromatographic separation. Lipid remodeling in liver and peritoneal cells from essential fatty acid deficient mice was qualitatively similar in cholesterol ester, phosphatidylcholine, and phosphatidylethanolamine. The monoenoic fatty acids palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9) were increased markedly, whereas all n-6 and n-3 polyunsaturated fatty acids were nearly depleted in phospholipid and cholesterol ester species. The n-9 polyunsaturated fatty acid surrogate, Mead acid (20:3 n-9), substituted for arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) in phospholipid, but not in cholesterol ester, species. Another notable difference was that adrenic acid (22:4 n-6) and docosapentaenoic acid (22:5 n-6), both metabolites of arachidonic acid, accumulated in phospholipid and cholesterol ester species of peritoneal cells, but not in liver cells, of essential fatty acid sufficient mice. The overall body of data presented illustrates the implementation of electrospray/tandem mass spectrometry as a method for facile and direct quantification of changes in lipid species during lipid metabolic studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call