Abstract

Electrospraying-based synthesis of NiCo2O4 (NCO-ES) nanoparticles that exhibit long cycle life and high rate capability is reported. The results are compared with a conventionally prepared NiCo2O4 sample by direct annealing (NCO-DA). The structure and morphology of NCO-ES and NCO-DA nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy to confirm the size, morphology, structure, and surface chemistry of the as-prepared samples. Electrochemical testing established that the NCO-ES sample displayed enhanced Li-ion storage performance. The NCO-ES delivered a discharge capacity of almost 370 mAh/g at the end of 50 cycles at 1C rate (890 mA/g) while only 180 mAh/g was retained for the NCO-DA sample at the same condition. At a high rate of 5C (4450 mA/g), NCO-ES electrodes delivered a stabilized specific capacity of 225 mAh/g with almost 100% Coulombic efficiency over 1000 cycles. Its rate capability and cycle life were found to be superior to NCO-DA electrodes. The nanoscale grain boundaries in the NCO-ES sample enhanced the lithium-ion diffusion and enabled high rate capability. The impedance analysis at different stages of lithiation/delithiation indicates a lower impedance and better kinetics as one of the reasons for better performance of the NCO-ES sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call