Abstract
The development of modular combinations of organocatalytic reactions into cascades has been shown to be an effective tool despite the fact that the mechanism of such a complex organocatalytic multistep cascade reaction still remains poorly understood. Here the detailed mechanistic studies of a complex organocatalytic triple cascade reaction for the synthesis of tetra-substituted cyclohexene carbaldehydes are reported. The investigation has been carried out using a triple quadrupole mass spectrometer with electrospray ionization. Important intermediates were detected and characterized through MS/MS studies. A detailed formation pathway is presented based on these characterized intermediates, and supporting the proposed mechanism of the formation of the substituted cyclohexene carbaldehydes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.