Abstract

Electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are soft ionization techniques commonly used in mass spectrometry. Although in-source and post-source decays of MALDI have been investigated extensively, the analogous decays of ESI have received little attention. Previous studies regarding the analogous decays of ESI focus on the dissociation of multiply charged proteins and peptides. The decay of carbohydrates in ESI has not been investigated yet, and it may have interference in carbohydrate structural determination. Commercial apparatus, including a high-performance liquid chromatography (HPLC), an ESI source, and a linear ion trap mass spectrometer, were used to investigate the fragmentation of several N-glycans during the ESI process. About 0.2%-3% of neutral N-glycans and more than 50% of N-glycans consisting of a sialic acid are dissociated into small N-glycans by ESI in-source decay in typical ESI operating conditions. The efficiencies of most dissociation channels increase as the temperature of ion transfer capillary increases, indicating that part of the energy deposited into the precursor ions for cracking is from the heated capillary. The cracking patterns of ESI in-source decay are slightly different from those of gaseous phase collision-induced dissociation. Large N-glycans are dissociated into small N-glycans in ESI in-source decay that may result in the interference of the structural identification of small N-glycans. Separation of large N-glycans from small N-glycans, for example, using HPLC, prior to ESI ionization is necessary to eliminate the interference. This is particularly important when N-glycans consist of sialic acid or large N-glycans have much higher concentration than that of small N-glycans in ESI solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call