Abstract

Our aim in this investigation was to demonstrate the potential of the high-resolution electrospray ionization ion mobility spectrometry (ESI-IMS) technique as an analytical separation tool in analyzing biomolecular mixtures to pursue astrobiological objectives of searching for the chemical signatures of life during an in-situ exploration of solar system bodies. Because amino acids represent the basic building blocks of life, we used common amino acids to conduct the first part of our investigation, which is being reported here, to demonstrate the feasibility of using the ESI-IMS technique for detection of the chemical signatures of life. The ion mobilities of common amino acids were determined by electrospray ionization ion mobility spectrometry using three different drift gases (N2, Ar, and CO2). We demonstrated that the selectivity can be vastly improved in ion mobility spectroscopy (IMS) in detecting organic molecules by using different drift gases. When a judicial choice of drift gas is made, a vastly improved separation of two different amino acid ions resulted. It was found that each of the studied amino acids could be uniquely identified from the others, with the exception of alanine and glycine, which were never separable by more then 0.1 ms. This unique identification is a result of the different polarizabilities of the various drift gases. In addition, a better separation was achieved by changing the drift voltage in successive experimental runs without significantly degrading the resolution. We also report the result of our analysis of liquid samples containing mixtures of amino acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call