Abstract
Characterizing supramolecular interactions offers significant challenges using NMR or crystallographic techniques either because of size limitations or the difficulty in forming suitable crystals, while mass spectrometry is largely limited to low resolution mass information. Here we report gas phase measurements of intact virus particles using electrospray ion mobility spectrometry with an accuracy in radial measurements that were sufficient to differentiate closely related species. In addition, measured diameters indicate that iscosahedral virus particles retain their structure in the gas phase as well as undergoing a slight compaction in the absence of solvent. Analysis of the human pathogen adenovirus represents the largest and most sophisticated biomolecular complex detected in the gas phase to date. These results, on a diverse set of viral systems, suggest that ion mobility spectrometry may have broad applications for the analysis of biological complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.