Abstract

CaFe2O4/MgFe2O4 nanowires with heterostructure had been successfully synthesized by electrospinning method. The obtained samples were systematically characterized by scanning electron microscopy (SEM), X‐Ray diffraction (XRD), UV–Vis diffuse reflectance spectra (UV‐Vis DR) and Environment scanning electron microscopy (ESEM). The novel CaFe2O4/MgFe2O4 nanowires exhibit an enhanced photocatalytic activity for degrading of tetracycline (TC) under visible light. Compared with bare CaFe2O4 or MgFe2O4 samples, the prepared CaFe2O4/MgFe2O4 (Ca:Mg:Fe = 3:2:10) composited nanowires show the best photocatalytic performance with a degradation efficiency of 40% after 150 min reaction time. This enhancement is attributed to the heterostructure of CaFe2O4/MgFe2O4 nanowires, which effectively repress the recombination of photo‐generated electrons and holes. Based on heterostructure and energy band positions, the enhancement of mechanism under visible‐light enhances the photocatalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.