Abstract

Fluorescing 5,10,15,20-terakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP)-embedded and -coated polyvinyl alcohol (PVA) nanofibers were fabricated by using the electrospinning technique. To improve nonpolar solvent solubility of TMPyP/PVA nanofibers, tetraethyl orthosilicate (TEOS) was used as a cross-linking agent. UV-vis spectroscopy showed a strong Q band and two relatively weak Soret bands from the TMPyP/PVA nanofibers, and revealed that the TMPyP molecules were homogeneously loaded to the fibers. Scanning electron microscopy revealed that the electrospun nanofibers had ultrafine structures with an average diameter of ca. 250 nm. X-ray photoelectron spectroscopy confirmed the compositional structure of TMPyP/PVA/TEOS nanofibers and revealed the relative coverage of TMPyP molecules on the surface of TMPyP-embedded and TMPyP-coated PVA/TEOS fibers. For the comparison of the acid vapor sensitivity, TMPyP-embedded PVA/TEOS films, and TMPyP-embedded PVA/TEOS fibers, TMPyP-coated PVA/TEOS fibers were exposed to 1N nitric-acid vapor for 20-60 seconds. Fluorescence microscopy revealed that TMPyP-coated PVA/TEOS nanofibers exhibited better acid-sensing capability than TMPyP-embedded PVA/TEOS nanofibers and films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.