Abstract

Abstract Blends of poly(lactic acid)/polycaprolactone (PLA/PCL) were electrospun under various conditions to study the influence of solution concentration, feed rate and voltage supply on the morphology of the nanofibers. To improve compatibility and to help produce fine electrospun nanofibers, an L-lactide/caprolactone (LACL) copolymer was introduced as a compatibilizer in the PLA/PCL blends. It was found that the solution concentration was a principal governing factor. The mean diameter of the fibers increased with the solution concentration, feed rate and voltage. Too high of a concentration and feed rate caused the fibers to stick to each other. A slow feed rate, 10% solution concentration, and 20 kV voltage were capable of producing thin, smooth and uniform fibers. Preliminary biocompatibility assays of the nanofibers were conducted with NIH 3T3 cells. The cells grown on the nanofiber blend exhibited spindle-like morphologies. The addition of PCL and LACL copolymer was found to improve the biocompatibility of PLA nanofibers, suggesting their potential application as cell culture scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.