Abstract

Purpose: The aim of this study was to present the influence of used reinforcement phase – graphene oxide (GO) and the electrospinning process parameters (the distance between the nozzle and collector) on the morphology and the structure of the obtained composite PAN-GO nanofibres. Design/methodology/approach: To produce pure polymer nanofibers, a 10% (wt.) electrospinning solution the polyacrylonitrile (PAN) was dissolved in N, N-dimethylformamide (DMF). The spinning solution used for electrospinning PAN-GO composite fibres was made by dissolving the PAN in a mixture of GO and DMF. By changing the configuration of the distance between the nozzle and collector (10 and 20 cm) and maintaining the remaining parameters (solution flow rate and potential difference between the electrodes), four samples in the form of nanofibrous mats were made. In order to identify the structure and morphology of the reinforcing phase, X-ray microanalysis (EDX) and scanning electron microscopy (SEM) were performed. In addition, the structure of graphene oxide microparticles was investigated by a Raman spectrometer. In order to determine the influence of the distance between the nozzle and the collector used in the electrospinning process and the addition of the reinforcing phase to the morphology and structure of the obtained PAN polymer nanofibres and PAN-GO composite nanofibres, they were examined using SEM. The analysis of the chemical composition of PAN and PAN-GO fibres was carried out using X-ray microanalysis. Findings: The morphology and structure analysis indicated that polymer nanofibres PAN for both the distances between the nozzle and the collector show no structural defects and presented same diameter over the entire length of the fibre. Nanofibres with the addition of GO obtained at both distances between the electrodes, showed defects in the form of beads. In addition, it was observed that with increasing distance between the nozzle and collector the diameter of obtained nanofibres is smaller for both pure PAN and composite PAN-GO samples. Research limitations/implications: The paper is the basis for further research in the field of the use of PAN-GO composite nanofibres as water purification materials. Originality/value: The electrospinning method can be an alternative to conventional methods for the production of filtering membranes due to the ease of carrying out the process and the fact that a material with a high specific surface area is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call