Abstract
We aimed to develop a greener process for dry-electrospinning food-grade modified starch through the elimination of organic solvents. The rheological properties and electrospinnability of aqueous dispersions of commercial octenylsuccinylated (OS) starches with various molecular weight (Mw) were investigated, yet only nanofibers with beads or defects could be obtained from OS starch with the highest Mw, i.e., Purity Gum@ Ultra (PGU). Further improvement in the fiber morphology was achieved by adding pullulan (PUL) as a minor component in the spinning dope. Smooth, continuous, and bead-free nanofibers (147-250 nm) were obtained from the PGU-PUL dispersions. Shown on an electrospinnability map, the successful electrospinning of 12%, 15%, and 20% (w/v) aqueous PGU dispersions required a minimum addition of 6%, 5%, and 3% (w/v) of PUL, respectively. The addition of PUL contributed to establishing sufficient molecular entanglement for electrospinning. This study provides a promising green process to produce starch-based nanofibers for use in various applications, e.g., drug delivery, wound dressing, and tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.