Abstract

Electrospinning of cellulose acetate with appropriated solvent system is the most straightforward method for fabricating micro- and nanofibers. To simultaneously and effectively remove both cationic and anionic dyes, a novel cost-effective multifunctional cellulose acetate (CA) fibers membrane was prepared by electrospinning followed by deacetylation, carboxymethylation and polydopamine (PDA) coating. The adsorption properties of PDA@DCA-COOH membrane were evaluated with methylene blue (MB) and Congo red (CR) as the ionic representatives for their removal. The results indicated that carboxyl, hydroxyl and amine multifunctional groups had been successfully grafted on the surface of the nanofibers with the maximum adsorption capacities of 69.89 and 67.31 mg g−1 for MB and CR, respectively, in the individual systems. The effect of co-existed dyes, inorganic salts and surfactants on the uptake of MB and CR in the simulated real complex system was strongly depended on the initial pH and ionic strength of the solution. The excellent adsorption capacities of the composite membrane were due to strong electrostatic attraction through the abundant functional groups on PDA@DCA-COOH surface. Based on its excellent recycling performance and adsorption property, PDA@DCA-COOH has a promising potential as an effective adsorbent in water treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.