Abstract

Abstract The objective of this study is to investigate the morphological (scanning electron microscopicy images), thermal (differential scanning calorimetry), and electrical (conductivity) properties and to carry out compositional analysis (Fourier-transform infrared) of produced nonwoven fibrous materials adapted in biomedical applications as scaffolds. The orientation of produced nanofilaments was also investigated because it is considered as one of the essential features of a perfect tissue scaffold. Viscosity and electrical conductivity of solutions, used in the manufacturing process, were also disassembled because these properties highly influence the morphological properties of produced nanofibers. The nanofibrous scaffolds were fabricated via conventional electrospinning technique from biopolymer, synthetic polymer, and their blends. The chitosan (CS) was chosen as biopolymer and polyethylene oxide (PEO) of low molecular weight as synthetic polymer. Solutions from pure CS were unspinnable: beads instead of nanofibers were formed via spinning. The fabrication of pure PEO nanomats from solutions of 10 wt%, 15 wt%, and 20 wt% concentrations (in distilled water) turned out to be successful. The blending of composed CS solutions with PEO ones in ratios of 1:1 optimized the parameters of electrospinning process and provided the opportunity to fabricate CS/PEO blends nanofibers. The concentration of acetic acid (AA) used to dissolve CS finely spuninned the nanofibers from blended solutions and influenced the rate of crystallization of manufactured fiber mats. The concentration of PEO in solutions as well as viscosity of solutions also influenced the diameter and orientation of formed nanofibers. The beadless, highly oriented, and defect-free nanofibers from CS/PEO solutions with the highest concentration of PEO were successfully electrospinned. By varying the concentrations of AA and low molecular weight PEO, it is possible to fabricate beadless and highly oriented nanofiber scaffolds, which freely can found a place in medical applications.

Highlights

  • Nanofibers can be obtained using various methods such as drawing, self-assembly, phase separation, template synthesis, bicomponent spinning, flash spinning, melt blowing, electrospinning, and some other methods [1, 2, 3]

  • The aim of the research was to investigate the spinnability of pure CS and quite low molecular weight polyethylene oxide (PEO), as well as their blends, and to analyze viscosity and conductivity of prepared solutions together with electrical, thermal, and morphological properties, especially the orientation of nanofibers of produced nonwoven fibrous materials adapted in biomedical applications as scaffolds

  • We could observe the same dependence for CS/PEO fiber mats as well, while for pure PEO scaffolds conductivity increases with the decrease in viscosity and increase in electrical conductivity in solutions

Read more

Summary

Introduction

Nanofibers can be obtained using various methods such as drawing, self-assembly, phase separation, template synthesis, bicomponent spinning, flash spinning, melt blowing, electrospinning, and some other methods [1, 2, 3]. Once the strength of the electric field has surpassed a threshold value and electrostatic force overcome the surface tension of the polymer solution, the Electrospinning is an electrohydrodynamic method, where the discharged polymer solution or melt jet is only stable at the tip of the spinneret (needle). The drop of the polymer solution at the tip of the needle became highly electrified, when a voltage is applied, and the induced charges became evenly distributed over the liquid surface. Attracted by the opposite charge of the grounded collector, the charged nanofibers are deposited as a randomly oriented, porous nonwoven fiber mat (scaffold) These randomly deposited fibrous scaffolds have potential applications as temporary substrates for skin and in bone tissue engineering because they replace the microstructure of natural tissue [10, 11]. The electrospun materials exhibit uniform and ultrafine fibers, high surface-to-volume ratio, porous structures, and controllable compositions, resulted in achieving the desired products with needed properties [4, 8]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call