Abstract

Atmospheric particulate matter (PMs) pollution has raised increasing public concerns, especially with the outbreak of COVID-19. The preparation of high-performance membranes for air filtration is of great significance. Herein, the biosynthetic polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was adopted to create a hierarchical structure and biodegradable nonwoven membrane for PMs filtration through a facile directly electrospinning method. The as-prepared membranes with hierarchical structure contain abundant nanowires (5-100 nm) and microfibers (2-5 μm) with different diameter (1000-5000 nm). We have achieved realization of formation mechanisms of such bimodal micro- and nanofibers, which stem from the branching of microfiber at early stage of electrospinning. The PHBV membranes exhibit a very high PM0.3 removal efficiency of 99.999% and PM2.5 removal efficiency of 100% with 0.077% standard atmospheric pressure in the air flow speed of 5.3 cm/s. More importantly, the PHBV membranes can be completely disintegrated within 1 week under composted conditions, indicating the great biodegradability of PHBV membranes. Our work provides insights for the development of biodegradable, high performance air filters for pollutants, molds, bacteria, and viruses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.