Abstract

Electrospinning of pure alginate or derivatives has always been a pursuing goal in biological fields in recent years owing to its fascinating biological characteristics and biomimetic structures. Yet it is still a severe challenge in view of its insufficient entanglements and strong electrostatic repulsions. Herein, alginate dialdehyde (ADA) with improved and adjustable chain flexibility was prepared via periodate-oxidation. Chain flexibility, concentration, ethanol and crosslinkers played key roles in electrospinning proved by persistence length (lp), the number of entanglement points (ne) and fiber morphology. Finally, insoluble ADA corsslinked nanofiber membranes were obtained, which exhibited excellent mechanical properties and adjustable degradability. Specially, biocompatibility assays confirmed that the preparing membranes were noncytotoxic, and could promote cell attachment and proliferation. Therefore, under the guidance of the relationship between chain flexibility and electrospinnability, pure alginate-based nanofiber membranes are expected to become promising scaffolds for biomedical applications, particularly for wound healing which demanding appropriate degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call