Abstract

The most fatal drawback of traditional sulfonated polymer proton-exchange membranes (PEMs) is their heavy dependence on water molecules to conduct protons, which causes a sharp decrease in their proton conductivity in low-humidity environments. Here, composite membranes were fabricated by electrostatically spinning halloysite nanotube-encapsulated ionic-liquids (IL@HNTs) incorporated into sulfonated poly(ether ether ketone) (SPEEK) (SPEEK/IL@HNTs). Using electrospinning, one-dimensional IL@HNTs ionogels with good water absorption were axially and uniformly aligned along the fiber filament direction. This formed long-range uninterrupted proton conduction pathways that greatly improved the proton conductivity of the composite membrane under various humidity environments. The axially-aligned structure facilitated crystallization, which improved the mechanical properties and thermal stability of the composite membrane. The SPEEK/6IL@HNTs membrane exhibited a through-plane proton conductivity of 139.2 mS cm−1 at 90 °C/98 % RH, representing a significant increase compared with the intrinsic SPEEK membrane. The SPEEK/6IL@HNTs membrane demonstrated a maximum power density of 732 mW cm−2, which exceeded that of the Nafion115 membrane (328 mW cm−2) by a factor of 2.2. It exhibited a single-cell performance equivalent to that of the Nafion212 membrane (723 mW cm−2), demonstrating that this provides a feasible approach to operating fuel cells in low-humidity environments without additional humidification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call