Abstract

Electrospinning was used to fabricate composite nanofibers based on nitrocellulose (NC), and some additives comprising aluminum nanoparticles, Fe2O3 nanoparticles and diaminofurazan (DAF). The appropriate mechanical properties (such as elasticity, stiffness and tensile strength) accompanied by the suitable combustion rate of these fibers make them attractive for the utilization in the propellant formulations. The results of this work show that the average diameter of electrospun composite nanofibers (NC fibers containing Al/Fe2O3/DAF) is 80 nm. Thermal behavior of the fabricated nanofibers was characterized by DSC technique. The results showed that thermal decomposition of the nanofibers happens at the temperature 190 °C. In this study, two non-isothermal kinetics analysis methods (i.e., Kissinger and Starink) were used to predict kinetic parameters of thermal decomposition, such as activation energy and frequency factor; as well as, thermodynamic parameters (ΔG#, ΔH#, and ΔS#). The results yield activation energies about 219 kJ mol−1 for thermal decomposition of the nanofibers. Moreover, it was found that the thermal stability of Al/Fe2O3/NC nanofibers in the presence of DAF improves and hence it has a positive effect on the safety of this nanocomposite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.