Abstract

We present an efficient Pb2+ electrosorption by nitrogen-doped graphene aerogels (NGAs) prepared by one-pot hydrothermal synthesis of nitrogen-doped graphene hydrogels (NGHs) followed by freeze-drying treatment. Pb2+ can be effectively removed by the as-prepared NGAs at an applied negative potential, and the removal mechanisms include (1) electrostatic attraction derived from external electric field, (2) electrostatic attraction caused by intrinsic charges on NGAs and Pb2+, (3) large specific surface area (SBET) of NGAs, and (4) coordination between doped nitrogen atoms and Pb2+. More importantly, after a simple and convenient electrodesorption treatment, the NGAs exhibit promising performance in recyclable electrosorption, and the removal ratio (%R) of Pb2+ decreases only ∼5% after successive 100 cycles, which is significantly superior to conducting polymer and conducting polymer/reduced graphene oxide (rGO) composites-based electrosorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.