Abstract

Hydrogen electrosorption into Pd-Au alloys has been studied in acidic solutions (1 M H2SO4) using cyclic voltammetry. Pd-Au electrodes with limited volume were prepared by electrochemical co-deposition. It was found that the maximum H/(Pd+Au) ratios decrease monotonically with increasing gold content and reach zero at ca. 70 at% Au. Similarly to the case of Pd limited volume electrodes, two peaks in the hydrogen region, corresponding to two types of sorbed hydrogen, are observed on voltammograms for Pd-rich alloys. The hydrogen capacity, H/(Pd+Au), measured electrochemically, depends on the sweep rate in the cyclic voltammetry experiments, which suggests that two different mechanisms for hydrogen desorption from the Pd-Au alloy are possible. After a strong decrease of Pd concentration at the electrode surface, caused by long cyclic polarization to sufficiently anodic potentials, the amount of absorbed hydrogen is still significant for alloys initially rich in Pd. The results obtained from CO adsorption experiments suggest that only Pd atoms are active in the hydrogen absorption/desorption process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.