Abstract

This paper investigates a new type of carbon-based electrodes, which were equipped with graphite and activated carbon fiber composite, to improve the performance of electrosorption. The results indicated that the highest desalination efficiency achieved 55 % and the optimal condition was 1.6 V voltage, 60 min retention time and 1.0 cm electrode distance. Freundlich isotherms successfully fitted with the respective behavior of the composite electrode and provided theoretical evidence for the desalination performance improvement. Applied in real black liquor of refined cotton, the graphite and activated carbon fiber composite electrodes achieved high removal efficiency for conductivity (59 %) and CODCr (76 %). Similar removal performance was also observed in sodium copper chlorophyll wastewater, and removal efficiency was 37 % for conductivity and 14 % for CODCr. For the first time, this research demonstrated the biodegradability improvement in real industrial wastewater via electrosorption treatment, suggesting a potential pretreatment technique for high-salinity wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.