Abstract

Electrorheological (ER) silicone elastomers containing particles based on silica (SiO2) and titania minerals (BaTiO3, Ba2Ti9O20, and BaTiO3/CaZrO3) were prepared and characterized. An electrical field was applied to align the particles during the cure of the silicone prepolymer. For the silicone/silica compositions, a prominent Maxwell–Wagner dispersion in the dielectric response suggested that surface conductivity of the silica particles dominated the polarization. Alignment of the particles increased the overall dielectric permittivity as well as the magnitude of the Maxwell–Wagner dispersion. Their ER response exhibited a negative deviation from a quadratic dependence on field intensity at high fields, and was accompanied by nonlinear conductivity. A highly nonlinear enhancement of the ER effect with increasing particle concentration was observed. For the silicone/titania elastomers as a class, the ER response increased with the particle’s permittivity. In the case of the silicone/BaTiO3 elastomer, the ER effect increased with field frequency, as expected from high permittivity of BaTiO3 relative to silicone, whereas the opposite dependence was observed for the silicone/silica ER elastomer, suggesting a conduction polarization mechanism for the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call