Abstract

Polyanilline-montmorillonite nanocomposite (PANI-MMT) particles were synthesized by an emulsion intercalation method and characterized by IR, XRD and TEM spectrometry. TEM showed that the particle's size of MMT-PANI particles was about 100 mm. The dielectric constant of PANI-MMT nanocomposite was increased 2.4 times than that of MMT and 7 times than PANI, the conductivity of PANI-MMT particles was increased was increased 10 times than that of MMT. Meanwhile, the dielectric loss tangent was also increased about 1.36 times than that of PANI. The electrorheological behaviors of the suspensions of PANI-MMT nanocomposite in silicone oil with a 30% weight fraction were investigated under DC electric fields. In 3 kV/mm DC field at room temperature, the yield stress was 8.26 kPa (shear 5 s-1). In 4 kV/mm DC field, the shear strength was 8.30 kPa (γ = 103.1 s-1, T = 20°C), and much higher than that of pure polyaniline (PANI), montmorillonite (MMT) and mixture of polyaniline with clay (MMT + PANI). The sedimentation experiment showed that the PANI-MMT nanocomposite particles did not deposit during about two months. The relevant influential factors between shear stress and electric fields, between shear stress and shear rate, between shear stress and temperature was also discussed preliminarily. The results showed that the MMT-PANI ER fluid displays a notable ER effect under DC electric field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call