Abstract
The built-in piezoelectric field induced by compressive stress in InGaN/GaN multi-quantum well (MQW) light-emitting diodes (LEDs) was investigated using the electric field dependent electroreflectance (ER) spectroscopic method. InGaN/GaN MQW structures were prepared on sapphire substrates of different thicknesses. Thinning the sapphire substrate enables control of the compressive stress by changing the curvature of the wafer bowing. The wafer bowing-induced mechanical stress alters the piezoelectric field in the InGaN/GaN MQW. The flat band voltage, estimated by measuring the applied reverse bias voltage that induces a 180° phase shift in the ER spectra, was decreased from −11.21 V to −10.51 V by thinning the sapphire substrate thickness from 200 to 60 μm. To calculate the piezoelectric field (Fpz) from the compensation voltage, the depletion width was obtained from the capacitance–voltage measurement. The Fpz estimated from the energy shift in ER peak in a bias range from 0 to −12 V was changed by 110 kV/cm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.