Abstract

AbstractSingle‐electron transfer (SET) plays a critical role in many chemical processes, from organic synthesis to environmental remediation. However, the selective reduction of inert substrates (Ep/2<−2 V vs Fc/Fc+), such as ubiquitous electron‐neutral and electron‐rich (hetero)aryl chlorides, remains a major challenge. Current approaches largely rely on catalyst photoexcitation to reach the necessary deeply reducing potentials or suffer from limited substrate scopes. Herein, we demonstrate that cumulenes–organic molecules with multiple consecutive double bonds–can function as catalytic redox mediators for the electroreductive radical borylation of (hetero)aryl chlorides at relatively mild cathodic potentials (approximately −1.9 V vs. Ag/AgCl) without the need for photoirradiation. Electrochemical, spectroscopic, and computational studies support that step‐wise electron transfer from reduced cumulenes to electron‐neutral chloroarenes is followed by thermodynamically favorable mesolytic cleavage of the aryl radical anion to generate the desired aryl radical intermediate. Our findings will guide the development of other sustainable, purely electroreductive radical transformations of inert molecules using organic redox mediators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.