Abstract

2,3-Diaryl propanoic acids are important structures as a result of their widespread presence in numerous bioactive compounds. However, the limitations of existing synthetic techniques include the requirement for costly catalysts and limited substrates. Here, we developed a novel electroreductive arylcarboxylation of alkenes with CO2 based on a radical-polar crossover pathway assisted by easily accessible dimethyl terephthalate as a reductive mediator. This method will provide an efficient strategy for the synthesis of 2,3-diarylpropanoic acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call