Abstract

A majority of the reported electrografting of aryldiazonium salts result in the formation of covalently attached films with a limited surface coverage of below 5 nmol·cm-2. Herein, we report the preparation of higher-thickness redox-active viologen-grafted electrodes from the electroreduction of viologen phenyl diazonium salts, by either cyclic voltammetric (CV) sweeps or electrolysis using a fixed potential. Both of the methodologies were successfully applied for various conductive surfaces, including glassy carbon (GC), gold disc, indium tin oxide glass, mesoporous TiO2 electrodes, and 3D compacted carbon fibers. A robust maximal viologen coverage, Γviologen = 9.5 nmol·cm-2, was achieved on a GC electrode by CV electroreduction. Electroreduction held at a fixed potential at Eappl. = -0.3 V can fabricate viologen-grafted electrodes with Γviologen in the range of 0-37 nmol·cm-2 in a controllable way, by simply adjusting the electrodeposition time tappl.. Time-dependent Γviologen were found to be 10 nmol·cm-2@2 min, 20 nmol·cm-2@4.2 min, and 30 nmol·cm-2@7 min. Furthermore, a TiO2 electrode coupled with Γviologen of 140 nmol·cm-2 exhibited electrochromic performance, with the color changing from pale yellow to blue and red brown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.