Abstract
Electroreduction of peroxodisulfate anion at smooth polycrystalline and platinized (at different deposition potentials) platinum in perchloric acid and sulfuric acid solutions is studied by rotating disc electrode and cyclic voltammetry techniques. Dependences of the process rate on the electrode rotating velocity, the potential scan rate, the anodic limit of the scanning, the peroxodisulfate anion concentration in the solution and the platinizing conditions are found. The suggestion on the complications in the peroxodisulfate anion reduction caused by adsorbate formation is corroborated, at least, for certain potential region. The reaction structure sensitivity is evidenced, which makes it possible to use the reaction for characterization of the platinized Pt surface structure. The comparing of obtained results with literature data concerning smooth platinum and the single-crystal platinum basis faces allows concluding that the peroxodisulfate anion reduction maximal rate in sulfuric-acid solutions occurs at the potentials close to those observed for the (110) face. When the platinized Pt surface roughness factor exceeds ~30, the peroxodisulfate anion reduction reaction proceeds under the inner-diffusion limitation control. The platinized-Pt rotating disc electrode can serve as model tool in the studying of properties of disperse material microdeposits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.