Abstract

The kinetics of N2O electroreduction in the absence and presence of methanol was studied between 295 and 333K on polycrystalline Pt and Pd electrodes in 0.1M NaOH. In the absence of methanol the reduction of N2O on Pd is more facile than on Pt as shown by the approximately four times lower apparent activation energy and lower Tafel slope (Pt: 0.111±0.019Vdec−1, Pd: 0.084±0.007Vdec−1 at 295K). Two different electroreduction mechanisms are proposed for Pt and Pd with and without participation of underpotential deposited hydrogen, respectively. The selectivity of Pt and Pd electrodes toward both N2O electroreduction and methanol (0.5 and 1M) oxidation at 295K was also investigated. Pt based electrocatalysts are promising candidates for the anode of a mixed reactant CH3OH–N2O fuel cell due to inhibition of N2O reduction by chemisorbed methanol. Pd on the other hand is a selective cathode electrocatalyst since N2O reduction takes place fairly actively in the presence of 1M methanol, while methanol oxidation is inhibited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.