Abstract
It is generally believed that CO2 electroreduction to multi-carbon products such as ethanol or ethylene may be catalyzed with significant yield only on metallic copper surfaces, implying large ensembles of copper atoms. Here, we report on an inexpensive Cu-N-C material prepared via a simple pyrolytic route that exclusively feature single copper atoms with a CuN4 coordination environment, atomically dispersed in a nitrogen-doped conductive carbon matrix. This material achieves aqueous CO2 electroreduction to ethanol at a Faradaic yield of 55 % under optimized conditions (electrolyte: 0.1 m CsHCO3 , potential: -1.2 V vs. RHE and gas-phase recycling set up), as well as CO electroreduction to C2 -products (ethanol and ethylene) with a Faradaic yield of 80 %. During electrolysis the isolated sites transiently convert into metallic copper nanoparticles, as shown by operando XAS analysis, which are likely to be the catalytically active species. Remarkably, this process is reversible and the initial material is recovered intact after electrolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.