Abstract
Nanosecond (ns) electric pulses of sufficient amplitude can provoke electroporation of intracellular organelles. This paper investigates whether such pulses could provide a method for controlled intracellular release of a content of small internalized artificial lipid vesicles (liposomes). To estimate the pulse parameters needed to selectively electroporate liposomes while keeping the plasma and nuclear membranes intact, we constructed a numerical model of a biological cell containing a nucleus and liposomes of different sizes (with radii from 50 to 500 nm), which were placed in various sites in the cytoplasm. Our results show that under physiological conditions selective electroporation is only possible for the largest liposomes and when using very short pulses (few ns). By increasing the liposome interior conductivity and/or decreasing the cytoplasmic conductivity, selective electroporation of even smaller liposomes could be achieved. The location of the liposomes inside the cell does not play a significant role, meaning that liposomes of similar size could all be electroporated simultaneously. Our results indicate the possibility of using ns pulse treatment for liposomal drug release.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.