Abstract

When a cell's transmembrane potential is increased from a physiological one to more than 370 mV, the transmembrane current increases more than hundredfold within a millisecond. This is due to the formation of conductive pores in the membrane. We construct a model in which we conceive of pore formation as a voltage sensitive chemical reaction. The model predicts the logarithm of the pore formation rate to increase proportionally to the square of the voltage. We measure currents through frog muscle cell membranes under 8 ms pulses of up to 440 mV. The experimental data appear consistent with the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call