Abstract

Application of a high electric field causes an electric shock to the heart. This is utilized in defibrillation to reestablish normal contraction rhythms during dangerous arrhythmias or in cardiac arrest. If shock-induced transmembrane potentials are large enough, they can cause tissue destruction due to irreversible electroporation (EP). Also electrochemotherapy of nearby tissues may have an adverse effect on the heart. Herein, we present experimental data on effects of electroporation in culture of cardiac cells (H9C2). The electric field was applied in short pulses of 25-3250 V/cm, 50 µs each. The viability of cells was tested by MTT assay after 24 hours. For detection of DNA fragmentation, associated with apoptosis, alkaline and neutral comet assays were performed after EP. Additionally phase contrast images of cells obtained directly after EP were analyzed. Although cell images indicated disruption of cell membranes after EP with high intensities, only a few percent of apoptotic cells and no necrotic effects in the cell nucleus could be observed in comet assay tests performed 2 hours post EP. MTT viability test showed that pulse intensities above 375 V/cm are destructive for myocytes viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.