Abstract

A general, self-consistent scheme for analyzing cellular electroporation for bio-medical applications is developed to probe realistic biological shapes and different length scales ranging from nanometers to hundreds of micrometers. The COMSOL Multiphysics suite is used with suitable embellishments to incorporate the details of the electroporation (EP) process and the inherent internal physics. The results are obtained for the voltage pulse driven electroporation for a Jurkat cell with mitochondria (as an example organelle) where spatial dimensions on the order of a few nanometers become important, to hundreds of cells (with Bacillus as an example) where collective effects and mutual interactions can dominate. Thus, scalable computing to generalized geometries with the ability to include complex organelles is made available. The results obtained for mitochondrial EP in Jurkat cells compare well with available data. In addition, quantitative predictions of field attenuation and shielding in Bacillus clusters are made, which point to highly nonuniform field distributions and a strong need to engineer novel electrode designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call