Abstract
Engraftment of intramuscularly transplanted myogenic cells in mice can be optimized after induction of massive myofiber damage that triggers myofiber regeneration and recruitment of grafted cells; this generally involves either myotoxin injection or cryodamage. There are no effective methods to produce a similar process in the muscles of large mammals such as primates. In this study, we tested the use of intramuscular electroporation for this purpose in 11 macaques. The test sites were 1 cm of skeletal muscle. Each site was treated with 3 penetrations of a 2-needle electrode with 1 cm spacing, applying 3 pulses of 400 V/cm, for a duration of 5 milliseconds and a delay of 200 milliseconds during each penetration. Transplantation of β-galactosidase-labeled myoblasts was done in electroporated and nonelectroporated sites. Electroporation induced massive myofiber necrosis that was followed by efficient muscle regeneration. Myoblast engraftment was substantially increased in electroporated compared with nonelectroporated sites. This suggests that electroporation may be a useful tool to study muscle regeneration in primates and other large mammals and as a method for increasing the engraftment of myoblasts and other myogenic cells in intramuscular transplantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Neuropathology & Experimental Neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.