Abstract

High-surface-area π-conjugated polymeric networks have the potential to lend outstanding capacitance to supercapacitors because of the pronounced faradaic processes that take place across the dense intimate interface between active material and electrolytes. In this report, we describe how benzo[1,2-b:3,4-b':5,6-b″]trithiophene (BTT) and tris(ethylenedioxythiophene)benzo[1,2-b:3,4-b':5,6-b″]trithiophene (TEBTT) can serve as 2D (trivalent) building blocks in the development of electropolymerized hierarchical π-conjugated frameworks with particularly high areal capacitance. In comparing electropolymerized networks of BTT, TEBTT, and their copolymers with EDOT, we show that TEBTT/EDOT-based copolymers, i.e., P(TEBTT/EDOT), can achieve higher areal capacitance (e.g., as high as 443.8 mF cm(-2) at 1 mA cm(-2)) than those achieved by their respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm(-2) (at 1 mA cm(-2)) and 12.1 mF cm(-2) (at 1 mA cm(-2))). For example, P(TEBTT/EDOT)-based frameworks synthesized in a 1:1 monomer-to-comonomer ratio show a ca. 35× capacitance improvement over PEDOT. The high areal capacitance measured for P(TEBTT/EDOT)-based frameworks can be explained by the open, highly porous hierarchical morphologies formed during the electropolymerization step. With >70% capacitance retention over 1000 cycles (up to 89% achieved), both PTEBTT- and P(TEBTT/EDOT)-based frameworks are resilient to repeated electrochemical cycling and can be considered promising systems for high life cycle capacitive electrode applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.