Abstract

A platinum electrode (Pt) was coated with poly(2-hydroxyethyl methacrylate) (PHEMA) by electrochemical polymerization using chronopotentiometry. Electropolymerization of polyaniline nanowires doped with camphorsulfonic acid (PANI:CSA) was further performed on the surface of the Pt-PHEMA electrode by cyclic voltammetry. The coated Pt-PHEMA-PANI:CSA electrode was characterized by Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). According to EIS, the Pt-PHEMA electrode exhibits a charge transport resistance (Rct) of 169.19 kΩ. The EIS analysis of Pt-PHEMA-PANI:CSA electrode reveals a less resistive character (Rct=1.28 Ω) than the observed for the Pt electrode coated with PANI:CSA (Rct=0.47 kΩ). As demonstrated by SEM, the Pt-PHEMA-PANI:CSA electrode has a high surface area due to the PANI:CSA nanowires embedded in Pt-PHEMA. The biocompatibility of PHEMA, allied to the electrochemical characteristics of PANI:CSA, could be useful to the development of implantable electrodes for biomedical applications.

Highlights

  • There has been recently an increasing interest in the development of soft implantable microelectrodes for medicine[1,2,3]

  • The present paper aims at the electropolymerization of polyaniline nanowires doped with camphorsulfonic acid (PANI) with fibrillary morphology by cyclic voltammetry and at its further embedding in poly(2-hydroxyethyl methacrylate) (PHEMA), synthesized through chronopotentiometric technique in an aqueous medium

  • The polymerization of hydroxyethyl methacrylate (HEMA) at platinum electrode (Pt) surface is an example of a free radical reaction in which water molecules undergo electrolysis to form hydroxyl radicals (HO)

Read more

Summary

Introduction

There has been recently an increasing interest in the development of soft implantable microelectrodes for medicine[1,2,3]. Several research groups have strategically explored the electrochemical synthesis (ECS) of poly(2-hydroxyethyl methacrylate) (PHEMA) from the monomer 2-hydroxyethyl methacrylate (HEMA) at metallic surfaces to reduce inflammatory reactions at the biological interface tissue-titanium[16,17]. At this interface, leachable chemicals from PHEMA, such as catalysts, chemical initiators, and organic solvents, were shown to cause cytotoxicity, resulting in severe biological effects ranging from the alteration of cellular transduction pathways and gene expression levels to cell transformation, mutagenesis, and cell death[18,19]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call