Abstract

This paper reports the results of a comparative study of the electropolymerization of phenol, o-methoxyphenol and o-nitrophenol by cyclic voltammetry on gold and carbon steel electrodes. The aim of this work is to synthesize homogeneous and adherent polyphenols film to protect carbon steel material against corrosion. Gold electrodes were used to optimize the experimental parameters such as the initial concentration of the monomer, the pH, the potential scan rate and the anodic potential limit value. Results showed that poly-o-metoxyphenol synthesized on carbon steel using optimized parameters obtained from gold electrode leads to more effective protection. This is probably due to the electron-donating mesomeric effet (+M) of the methoxy group which stabilized the phenoxy radicals obtained during the monoelectronic discharge of o-methoxyphenol. The best electropolymerization conditions involved an aqueous solution of 0.04M o-methoxyphenol at pH 10.7, 5mVs−1 potential scan rate and an anodic potential limit (1.64V/SCE) avoiding the degradation of the polymer film. The application of these conditions on steel electrodes leads to the formation of a stable, adherent and inhomogeneous film of polymer. A polymerization mechanism was proposed with consideration of results from literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call