Abstract

Anodic dissolution and electropolishing of Sn were investigated in an amide-type ionic liquid, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide. The rate of anodic dissolution was considered to be determined by the diffusion of anodically dissolved Sn(II) species. A large increase in the local viscosity during dissolution was observed in-situ by the impedance-type electrochemical quartz crystal microbalance, reflecting an increase in the local concentration of Sn(II) near the electrode. A shiny and smooth surface was obtained after anodic dissolution at 0.1 V vs Ag∣Ag(I) with agitation. A decrease in the surface roughness estimated by confocal laser scanning microscopy suggested electropolishing of Sn was possible in the ionic liquid within the electrochemical potential window probably due to the formation of the viscous layer near the electrode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call