Abstract

The problem of obtaining predicted physical and mechanical properties and a given service life of multifunctional composite protective coatings in the form of barrier layers that increase the service life of mechanical engineering products and formative tools are inherently interconnected. Among all the variety of innovative highly efficient technological processes, a special place should be given to the method of electro-acoustic spraying (ELAN). This method is innovative in the field of synthesis of multifunctional composite coatings, which allows the formation of protective films of an amorphous material on any conductive substrates [1]. This technology is based on the use of the complex energy of an electric spark and a complex ultrasonic field. The aim of this work is to optimize the process of obtaining multifunctional composite protective coatings based on the complex mass transfer of the electrode material and the subsequent formation of amorphous structures with predictable physical and mechanical properties by the method of electro-acoustic spraying based on the effect of electro-plasticity during deformation and pulsed action of a high-energy electromagnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call