Abstract
The electrophysiological properties of neurons in the rat perirhinal cortex were analyzed with intracellular recordings in an in vitro slice preparation. Cells included in this study (n = 59) had resting membrane potential (RMP) = -73.9 +/- 8.5 mV (mean +/- SD), action potential amplitude = 95.5 +/- 10.4 mV, input resistance = 36.1 +/- v 15.7 M omega, and time constant = 13.9 +/- 3.4 ms. When filled with neurobiotin (n = 27) they displayed a pyramidal shape with an apical dendrite and extensive basal dendritic tree. Injection of intracellular current pulses revealed: 1) a tetrodotoxin (TTX, 1 microM)-sensitive, inward rectification in the depolarizing direction (n = 6), and 2) a time- and voltage-dependent hyperpolarizing sag that was blocked by extracellular Cs+ (3 mM, n = 5) application. Prolonged (up to 3 s) depolarizing pulses made perirhinal cells discharge regular firing of fast action potentials that diminished over time in frequency and reached a steady level (i.e., adapted). Repetitive firing was followed by an afterhyperpolarization that was decreased, along with firing adaptation, by the Ca(2+)-channel blocker Co2+ (2 mM, n = 6). Action potential broadening became evident during repetitive firing. This behavior, which was more pronounced when larger pulses of depolarizing current were injected (and thus when repetitive firing attained higher rates), was markedly decreased by Co2+ application. Subthreshold membrane oscillations at 5-12 Hz became apparent when cells were depolarized by 10-20 mV from RMP, and action potential clusters appeared with further depolarization. Application of glutamatergic and GABAA receptor antagonists (n = 4), CO2+ (n = 6), or Cs+ (n = 5) did not prevent the occurrence of these oscillations that were abolished by TTX (n = 6). Our results show that pyramidal-like neurons in the perirhinal cortex are regular firing cells with electrophysiological features resembling those of other cortical pyramidal elements. The ability to generate subthreshold membrane oscillations may play a role in synaptic plasticity and thus in the mnemonic processes typical of this limbic structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.