Abstract

Electrophysiological investigations of autonomic neuromuscular transmission have provided great insights into the role of ATP as a neurotransmitter. Burnstock and Holman made the first recordings of excitatory junction potentials (e.j.p.s) produced by sympathetic nerves innervating the smooth muscle of the guinea-pig vas deferens. This led to the identification of ATP as the mediator of e.j.p.s in this tissue, where ATP acts as a cotransmitter with noradrenaline. The e.j.p.s are mediated solely by ATP acting on P2X 1 receptors leading to action potentials and a rapid phasic contraction, whilst noradrenaline mediates a slower, tonic contraction which is not dependent on membrane depolarisation. Subsequent electrophysiological studies of the autonomic innervation of smooth muscles of the urogenital, gastrointestinal and cardiovascular systems have revealed a similar pattern of response, where ATP mediates a fast electrical and mechanical response, whilst another transmitter such as noradrenaline, acetylcholine, nitric oxide or a peptide mediates a slower response. The modulation of junction potentials by a variety of pre-junctional receptors and the mechanism of inactivation of ATP as a neurotransmitter will also be described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.